Balls and buckets for discrete time Markov chain generation
نویسندگان
چکیده
منابع مشابه
Discrete Time Markov Chain (DTMC)
A. A stochastic process is a collection of random variables {X t , t ∈ T }. B. A sample path or realization of a stochastic process is the collection of values assumed by the random variables in one realization of the random process, e.g. C. The state space is the collection of all possible values the random variables can take on, i.e. it is the sample space of the random variables. For example...
متن کاملArrival probability in the stochastic networks with an established discrete time Markov chain
The probable lack of some arcs and nodes in the stochastic networks is considered in this paper, and its effect is shown as the arrival probability from a given source node to a given sink node. A discrete time Markov chain with an absorbing state is established in a directed acyclic network. Then, the probability of transition from the initial state to the absorbing state is computed. It is as...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولMarkov chain Monte Carlo for continuous-time discrete-state systems
A variety of phenomena are best described using dynamical models which operate on a discrete state space and in continuous time. Examples include Markov (and semiMarkov) jump processes, continuous-time Bayesian networks, renewal processes and other point processes. These continuous-time, discrete-state models are ideal building blocks for Bayesian models in fields such as systems biology, genet...
متن کاملSymbolic Counterexample Generation for Discrete-Time Markov Chains
In this paper we investigate the generation of counterexamples for discrete-time Markov chains (DTMCs) and PCTL properties. Whereas most available methods use explicit representations for at least some intermediate results, our aim is to develop fully symbolic algorithms. As in most related work, our counterexample computations are based on path search. We first adapt bounded model checking as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: CLEI Electronic Journal
سال: 1999
ISSN: 0717-5000
DOI: 10.19153/cleiej.2.2.1